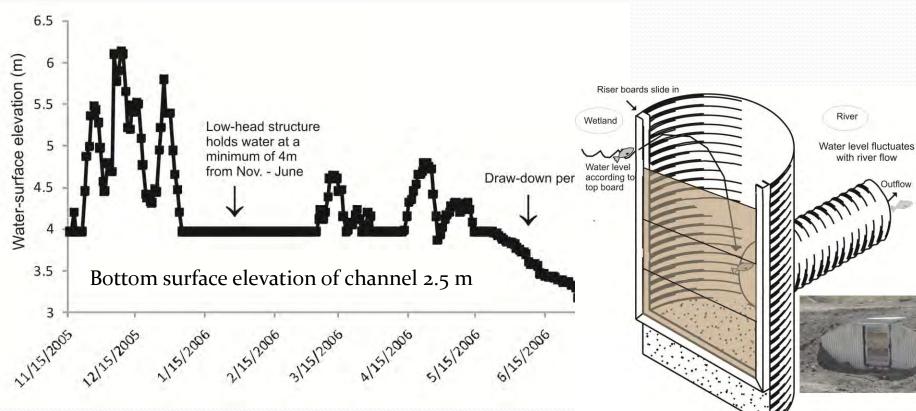

Fish Use of Floodplain Lakes, Seasonal Floodplain Wetlands, and Sloughs in the Upper Columbia River Estuary

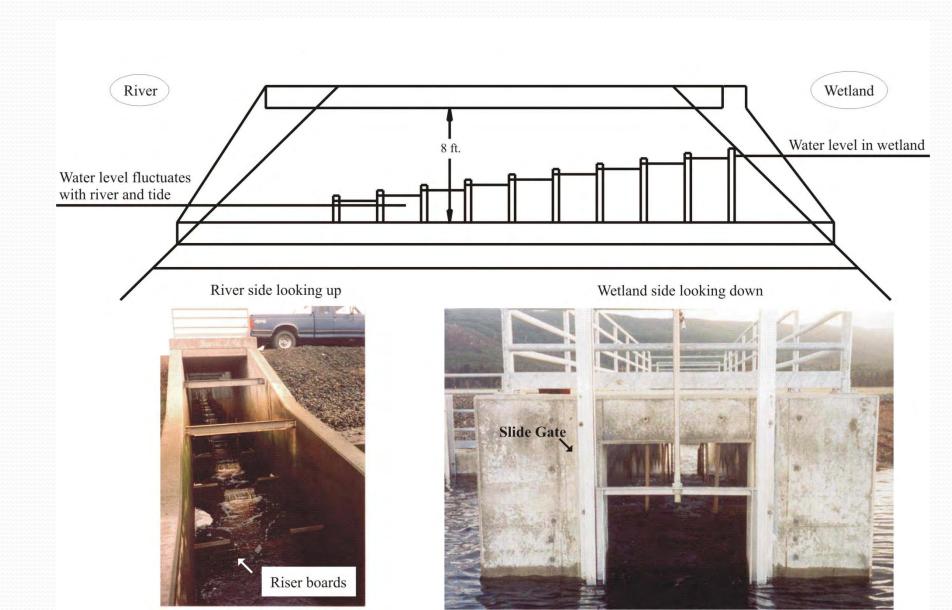
Cyndi Baker, Ph.D. formerly with Ducks Unlimited, Inc.

Background c

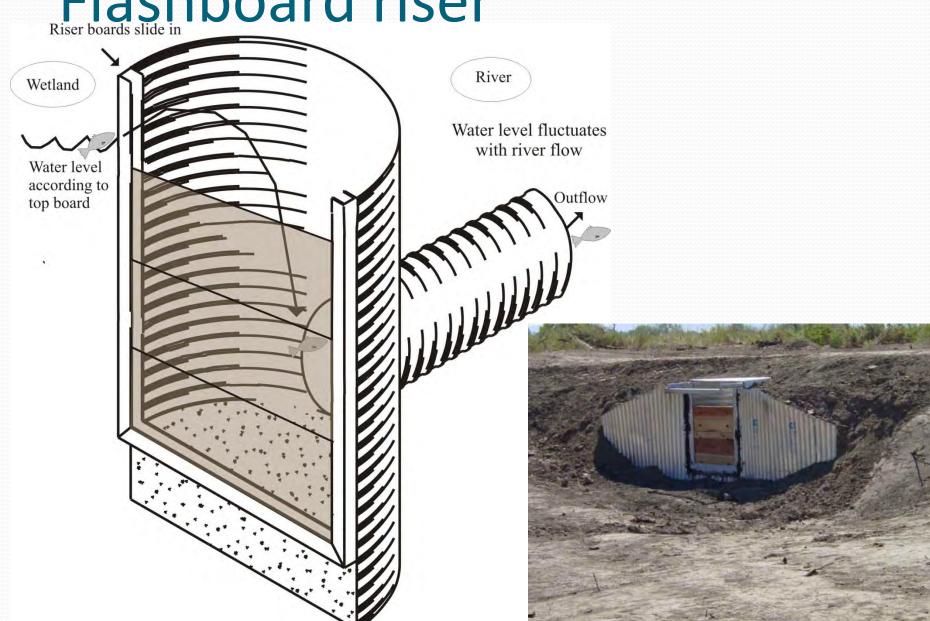
- 15 sites in seasonal flo across Oregon & Wasl
- Community ecology p
 - Fish assemblage late-fal
 - Movement into/out of f
- Restoration projects a
 - •Juvenile salmon use was
 - •Seasonal use of floc
 - •Fish passage capabi
 - •Risk of stranding /p by allowing access to
 - •Benefits to salmon connectivity to flood during winter/spring factor, survival)



Actively managed sites

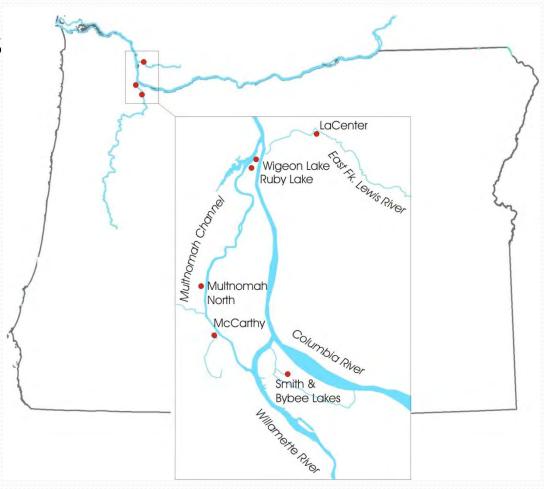


Structures increase duration and predictability of inundation



Pool-weir-chute

Flashboard riser



Site selection

- Opportunistic sampling at Ducks Unlimited project sites in Oregon and Washington
 - Wetlands periodically accessible to riverine fishes during period of inundation (Nov-June)
 - No salmon spawning occur in streams flowing into wetland sites (juvenile salmon must enter from adjacent river)
 - Broad geographical range across continuum of environmental conditions
 - Dispersed across PNW

Sites in Lower Willamette and East Fork Lewis rivers

- Smith & Bybee Lakes
- •McCarthy Ck. (aka Enyart)
- •Multnomah N.
- Ruby Lake
- Widgeon Lake
- LaCenter

Sampling Protocol

- Based on water year
 - November through June
 - •WY 2002 to 2006 (5 yrs)
- Within wetland sampling
- Ingress/egress sampling

Environmental Variables

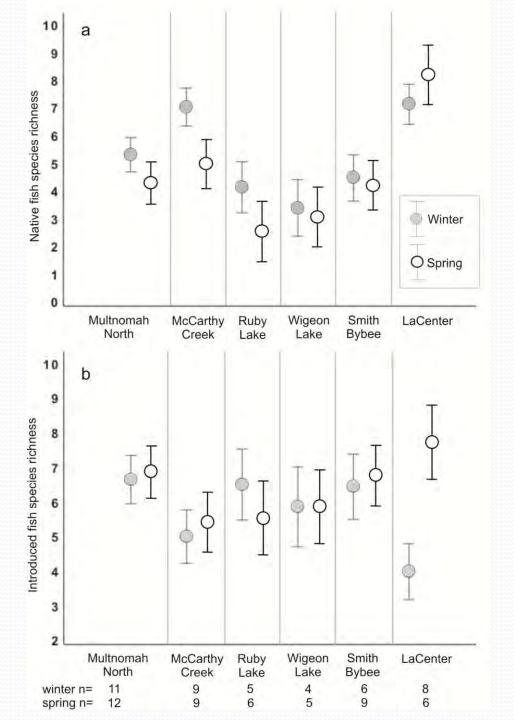
- Water temperature
- Water surface elevation (river vs. floodplain)
- Precipitation
- Wetland site (area, volume, average depth, distance to salmon migration route)
- Categorical (region, tidal influence, structure type, stream flow through wetland)
- Other (lunar phase, barometric pressure)

Within-wetland sampling

- Passive trap nets (4-5 nets)
- Set every 4-6 weeks
- Overnight sets
- 176 sample events (1-2 days, all nets used)

Ingress/Egress sampling

- Two-way traps all six sites in Upper CR estuary
- Traps checked 3x/week
- 1311 sample events (trap-check days/site)


Fish Species

Comparison among six sites in upper Columbia River estuary

Fish species
presence
(indicated by X)
at each site in
UCRE (species
common to all
sites are shaded)

Species in order of	McCarthy Ck.	Mulnomah N.	LaCenter	Smith-	Wigeon Lk.	Ruby Lk.
abundance				Bybee		
Native fish species	k X	X	X	X	X	X
Threespine sticklebac		X	X	X		X
Northern pikeminnow	X				X	
Chinook	X	X	X	X	X	X
Redside shiner	X	X	X	X	X	X
Peamouth	X	X	X	X	X	V
Coho	X	X	X		V	X
Largescale sucker	X	X	X	X	X	X
Sculpin sp.	X	X	X	X	X	Χ
Lamrey sp.	X	Х	X	X		
Rainbow/steelhead	X		X	Х		
Cutthroat	X		Х			
Chiselmouth		X				
Total native species	11	10	11	9	7	6
Introduced fish specie	S					
Carp/goldfish	X	X	Х	Х	Х	Χ
Yellow perch	X	X	Χ	Χ	Х	Χ
Crappie sp.	X	X	Χ	X	Χ	Χ
Bullhead sp.	X	X	Χ	X	Χ	Χ
Sunfish sp.	X	X	Χ	Χ	Χ	Χ
Oriental weatherfish	Χ	Χ		Х	Χ	Χ
Banded killifish	Χ	Χ	Χ	Х	Χ	Χ
Golden shiner	Х	X	Χ	Х	Х	Χ
Largemouth bass	Х	Х	Х	Х	Х	Χ
Amur goby			Х			
Mosquitofish	Χ	Χ	Χ	X	Χ	Χ
Smallmouth bass	Х	Х		Х		
Fathead minnow	Χ	X				
Total introduced species	12	12	10	11	10	10
Total N+I species	23	22	21	20	17	16
				-		

Average a) native and b) introduced fish species richness among UCRE sites in winter and spring (with 95% confidence intervals).

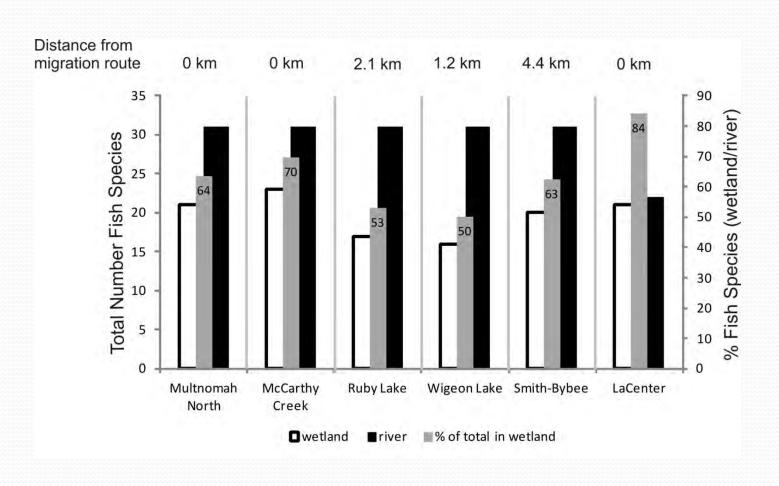
In UCRE sites: % of total catch small-bodied fishes <200 mm

Of the total catch in all wetlands, small-Bodied fishes weighed 72% of the total catch and large-bodied fishes weighed the remaining 28%

Species (≤200mmFL)	fish/net-day	% of total catch
Threespine stickleback	420.92	74.5←
Carp/goldfish (<100mmFL)	48.3	8.6
Yellow perch	18.39	3.3
Northern pikeminnow	18.04	3.2
Crappie sp.	13.53	2.4
Brown bullhead	9.71	1.7
Sunfish sp.	9.41	1.7
Chinook	6.34	1.1
Redside shiner	6.26	1.1
Peamouth	5.46	1
Coho	1.79	0.3
Carp (>100mmFL)	1.33	0.2
Oriental weatherfish	0.87	0.2
Sculpin sp.	0.83	0.1
Largescale sucker	0.64	0.1
Banded killifish	0.57	0.1
Golden shiner	0.39	0.1
Largemouth bass	0.26	0
Lamprey sp.	0.08	0
Amur goby	0.07	0
Mosquitofish	0.07	0
Rainbow trout (steelhead)	0.02	0
Cutthroat trout	0.01	0
Smallmouth bass	0.01	0
Fathead minnow	0	0
Chiselmouth	0	0
	total=	99.70%

27.8% of catch, by weight (all fish – large and small)

% of total catch large-bodied fishes >200 mm


				% of total
Species (>200mmFL)	Max. FL (mm)	Av. FL (mm)	fish/net-day	catch
Peamouth	294	229	0.5	0.1
Carp/goldfish (>200mmFL)	680	378	0.41	0.1
Brown/yellow bullhead	462	230	0.28	0 —— 69 fish
Largescale sucker	550	387	0.23	0
Rainbow trout (steelhead)	780	241	0.03	0
Yellow perch	290	220	0.03	0 9 fish
Northern pikeminnow	405	286	0.01	o > each
Crappie sp.	301	235	0.02	o — 7 fis
Cutthroat trout	252	228	0.01	0
Chinook	236	236	0	0
Largemouth bass	226	226	0	0 >> 1 fish
Smallmouth bass	250	250	0	o each
			total=	0.30%

Large bodied fishes weighed 28% of the total catch

- •24% was non-predatory fishes (carp, suckers)
- •4% of the total catch, by weight, were piscivorous fishes (bullhead, N. pikeminnow, etc.)

How does fish species composition differ between floodplain lakes and sloughs? I have data attributed by channel, pond and wetland but not analyzed Not always easy to distinguish habitat types especially during high water

How does fish species composition differ between main stem and floodplain habitats?

About 60% of fish species found in rivers were documented in the adjacent wetlands. Almost all fish species in a given wetland were present in the adjacent river (94%)

	Willamette River		East Fork	Lewis River
1. American shad (i)	9. chiselmouth	20. peamouth	1. Chinook	13. largemouth bass
2. banded killifish (i)	10. coho	21. prickly sculpin	2. chum	14. smallmouth bass
3. black crappie (i)	11. carp (i)	22. redside shiner	3. coho	15. carp
white crappie (i)	goldfish (i)	23. sandroller	4. steelhead/rainbow	goldfish
4. bluegill (i)	12. smelt	24. smallmouth bass (i)	5. cutthroat	16. white crappie
pumpkinseed (i)	13. golden shiner (i)	25. sockeye	6. sculpin	black crappie
warmouth (i)	14. largemouth bass (i)	26. starry flounder	7. bridgelip sucker	17. banded killifish
5. bridgelip sucker	15. longnose dace		largescale sucker	18. yellow perch
largescale sucker	speckled dace	27. steelhead/rainbow	8. peamouth	19. pumpkinseed
		28. threespine		
6. brown bullhead (i)	16. mosquitofish (i)	stickleback	9. northern pikeminnow	_20. brown bullhead
yellow bullhead (i)	17. mountain whitefish	29. walleye (i)	10. smelt	yellow bullhead
7. channel catfish (i)	18. northern pikeminnow	30. sturegon	11. sandroller	21. white sturgeon
				22. threespine
8. Chinook	19. Pacific lamprey	31. yellow perch (i)	12. redside shiner	stickleback

i=introduced

exclusive to river

In Willamette River floodplain sites, only fathead minnow & oriental weatherfish exclusive to wetlands

In LaCenter wetland, Amur goby, golden shiner & Mosquitofish exclusive to wetland

Community analyses

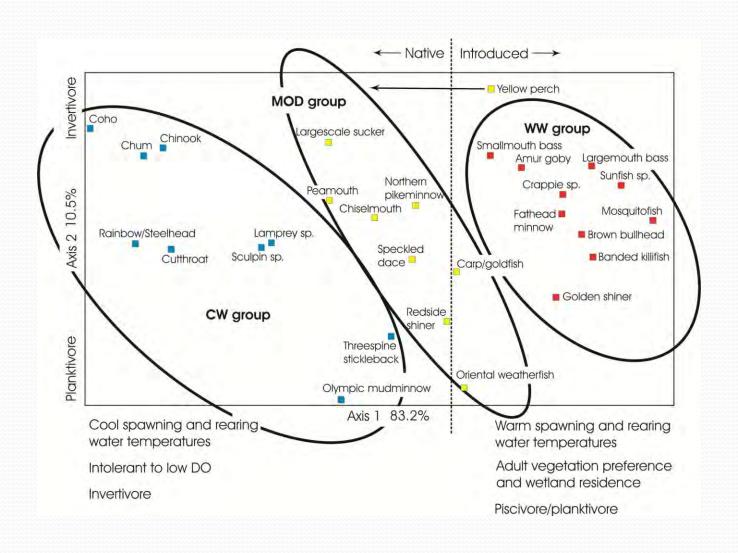
Find patterns in fish communities and relate to environmental variables

PC-ORD

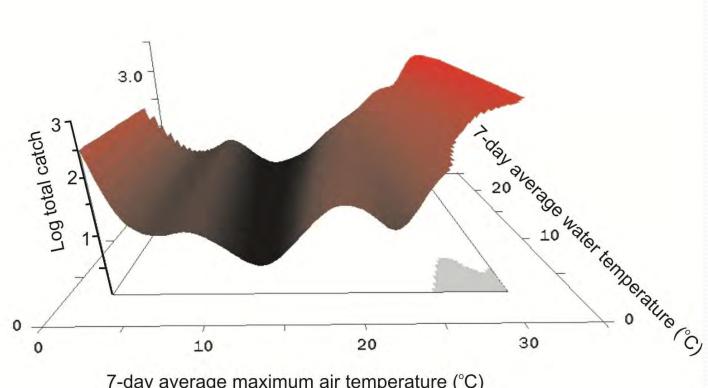
- cluster analysis assign species to functional groups and validate group membership
- -non-metric multidimensional scaling ordination method used to correlate groups with species trait characteristics
- and for graphical representation displaying the association between fish species and species traits

HyperNiche

- non-parametric multiplicative regression
- used to identify relationships between individual fish species and variables from the environmental matrix

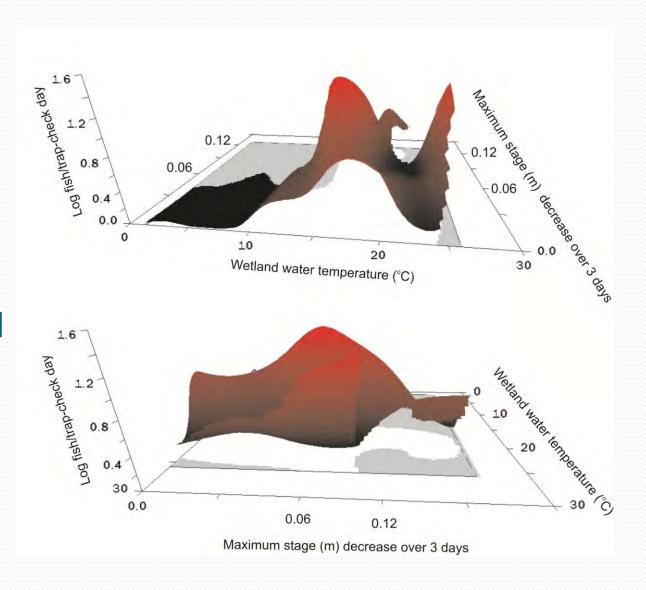

brown	carp/		
bullhead	goldfish	chiselmouth	coho
pisc	macro	plank	macro
у	У	n	n
n	n	у	у
У	у	n	n
у	y	n	n
wetland	wetland	stream	stream
mud	veg	gravel	gravel
20.4	14.5	15	4.4
21.7	20	17	9.4
n	n	у	y
Apr-Jun	Apr-Jul	May-Jul	Sep-Jan
n	n	n	n
21	14.5	15	12
27.3	18.5	20	15
still	still	mod	low
veg	veg	log/rock	pool/ch
у	У	n	у
hi	hi	low	low
	pisc y n y y wetland mud 20.4 21.7 n Apr-Jun n 21 27.3 still veg y hi	bullhead goldfish pisc macro y y n n y y y wetland wetland mud veg 20.4 14.5 21.7 20 n n Apr-Jun Apr-Jul n n 21 14.5 27.3 18.5 still still veg veg y y hi hi	bullheadgoldfishchiselmouthpiscmacroplankyynnnyyynyynwetlandwetlandstreammudveggravel20.414.51521.72017nnyApr-JunApr-JulMay-Julnnn2114.51527.318.520stillstillmodvegveglog/rockyyn

trophic category is according to the most common size class in the catch (macroinvertebrate, piscivore, planktivore)

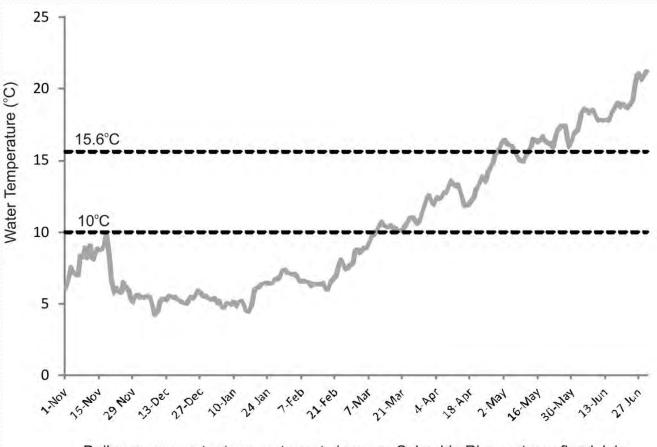

spawning substrate/structure (log, vegetation, mud, gravel, sand) juvenile preference for structure/substate (log/rock, veg, mud, pool/channel)

Group WW: Introduced, warm- water spawning and rearing temperatures	Group MOD: Native and introduced*, moderate spawning and rearing water temperatures	Group CW: Native, cool-water spawning and rearing temperature
Amur goby (GOB)	Chiselmouth (CHM)	Chinook (CHI)
Banded killifish (BAK)	Largescale sucker (LGS)	Coho (CHO)
Brown bullhead (BRB)	Northern pikeminnow (NPM)	Chum (CHU)
Crappie (CRP)	Peamouth (PEA)	Cutthroat (CUT)
Fathead minnow (FHM)	Redside shiner (RSS)	Rainbow trout (RBT)
Golden shiner (GOS)	Speckled dace (SKD)	Sculpin (COT)
Largemouth bass (LMB)	Carp/goldfish* (CAP)	Lamprey (LAM)
Mosquitofish (MOF)	Oriental weatherfish* (OWF)	Olympic mudminnow (OLY)
Smallmouth bass (SMB)	Yellow perch* (YEP)	Threespine stickleback (TSS
Sunfish (SUN)		

Ordination displaying the association between fish species and species traits


Response surface of introduced, warm-water fish functional group to environmental variables

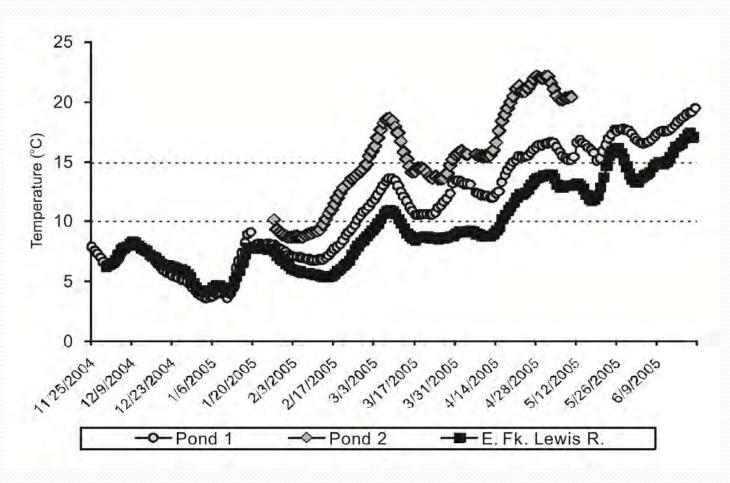
7-day average maximum air temperature (°C)


Predictor	Sensitivity	Tolerance	
7-d avg max air temp	0.6580	1.370	
7-d avg water temp	0.0333	7.315	

Two views of response surfaces of inbound WW fish (log fish/trapcheck day) at Smith-Bybee wetland to wetland water temperature (°C) and maximum 3-day stage (m) decrease, 2005-2006

Site Trap Predictor 1 direction (sensitivity)		Predictor 1	Predictor 2	xR ²	# CLI
		(sensitivity)	(sensitivity)		# SU
		νν	/W		
SB	IN	WetWt (1.0069)	WM3dSD (0.3391)	0.4671	115

Average Daily
Average Water
Temperatures
in Six UCRE
Floodplain
Wetlands NovJune, 2002 2006

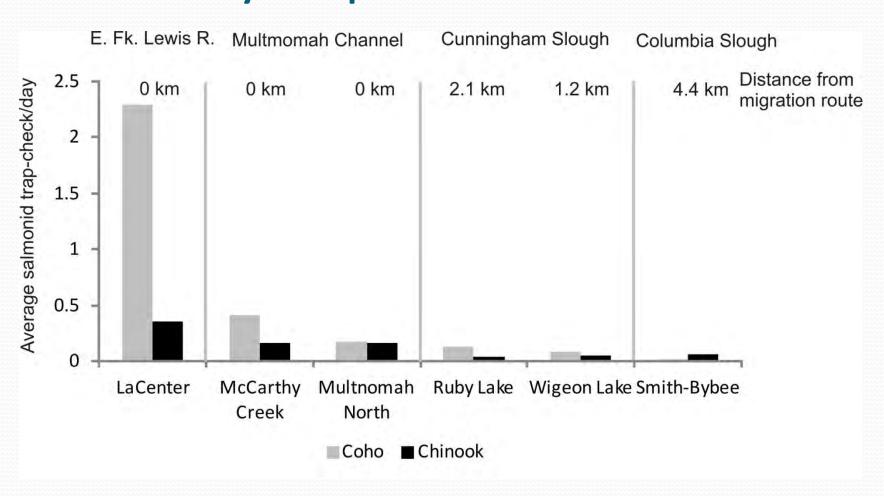

Daily average water temperature at six upper Columbia River estuary floodplain wetland sites, 2002-2006

Species	Water temperature (°C)		References	
Species	minimum	maximum	References	
Chinook	10	15.6	(Armour 1991)	
0.0 0.0 0.0	12	14	(Scott and Crossman 1998)	
Chum	12	14	(Scott and Crossman 1998)	
Coho	12	15	(Bjornn and Reiser 1991)	
Cutthroat trout	12	15	(Hickman and Raleigh 1982)	
Rainbow trout	10	16	(Benke 1992)	

Preferred water temperatures for juvenile salmonid rearing

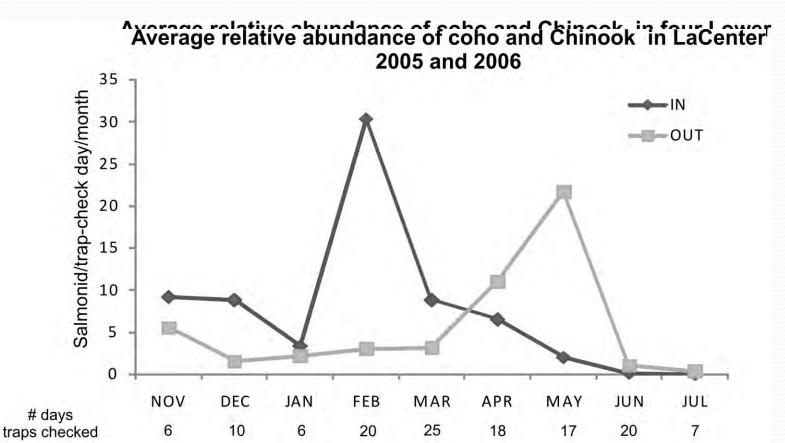
Water temperature in the East Fork Lewis River and two ponds within LaCenter Bottoms wetland, Nov. 2004-June 2005

- Behavioral thermoregulation move through temperature gradients to find preference
- Hydrologic connectivity allows fish to move between river and floodplain to find most suitable habitat

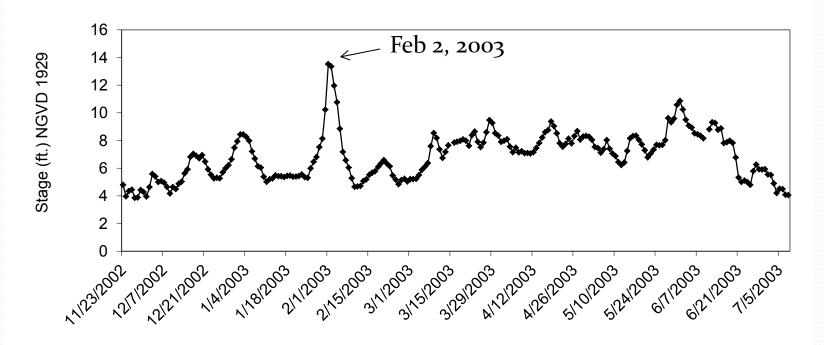


Juvenile coho and Chinook ingress/egress

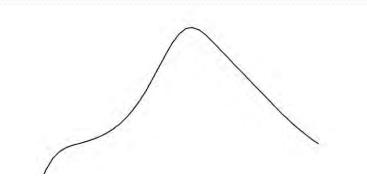
What factors influence movement in and out of floodplain habitats


Average catch of coho and Chinook in two-way traps

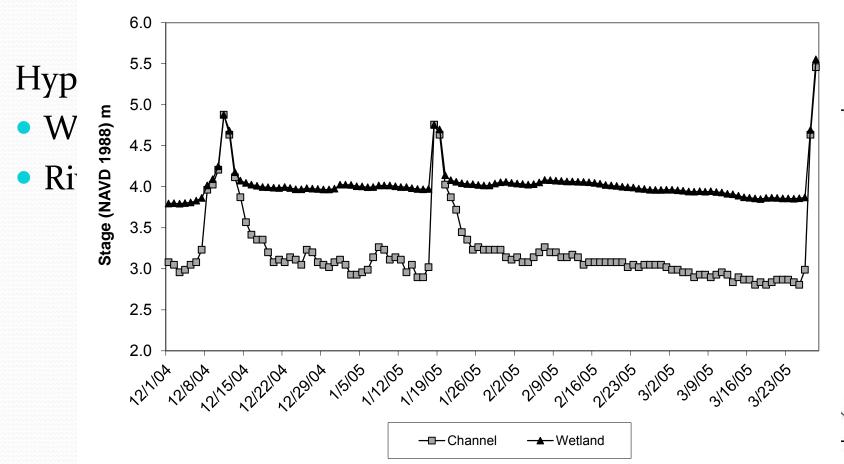
Ingress/Egress


trap-check days

missed from overtopping

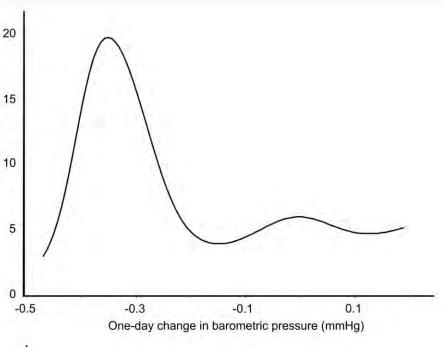

Two-way traps missed ingress of juvenile salmonids during high water events – McCarthy Ck. Wetland after high water event

Water surface elevation in Multnomah Channel WY 2003

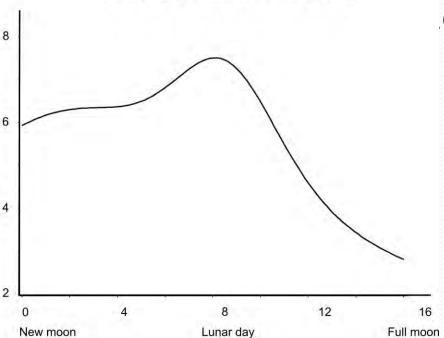

- •High water event in Mulnomah Channel 2/2/03
- •Sampled floodplain on 2/11/03: 1,012 o+ Chinook caught (34-52 mm and 52 coho (67-108mm)
- •In April, only 10 o+ Chinook were caught

East Fork Lewis River daily average water level (National Geodetic Vertical Datum, 1988)

4.0



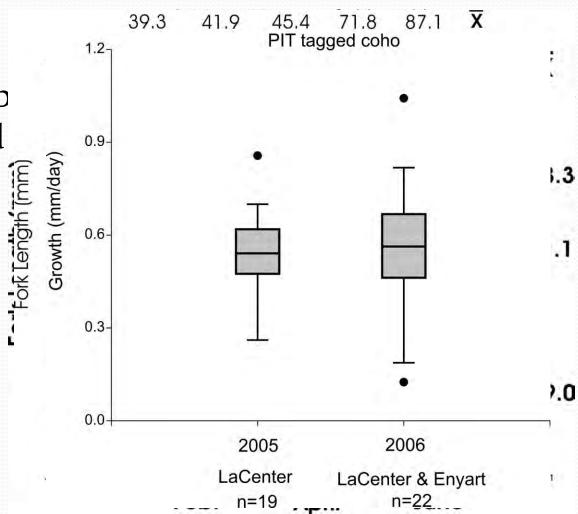
- One day ch
- Lunar phas


HyperNich

Fish/trap-check day

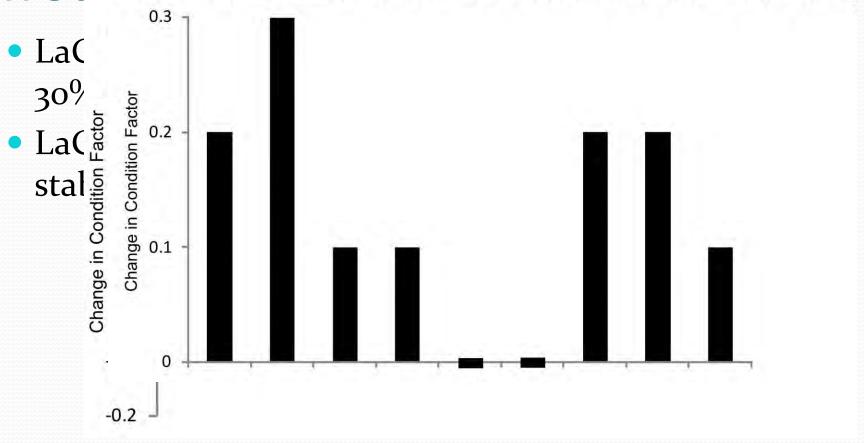
egress

).35 mm Hg)


(66)

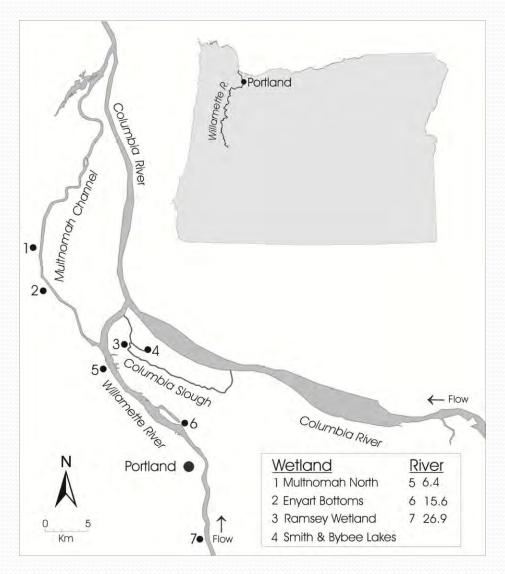
Potential benefits for salmonids using floodplain habitats

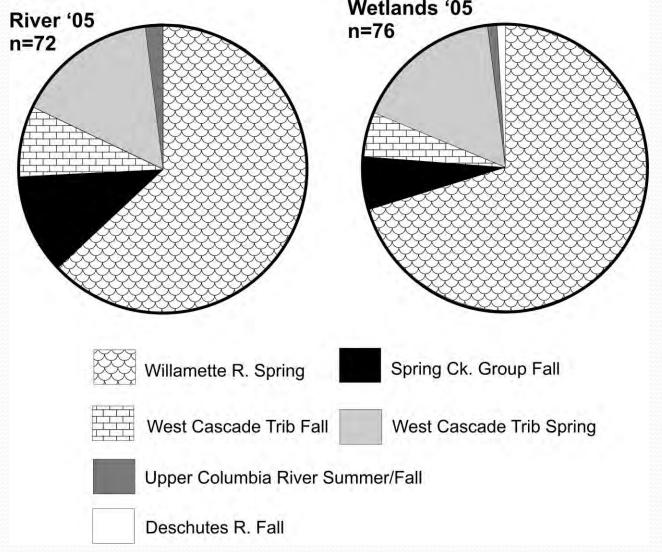
Juvenile salmon growth in


wetlands

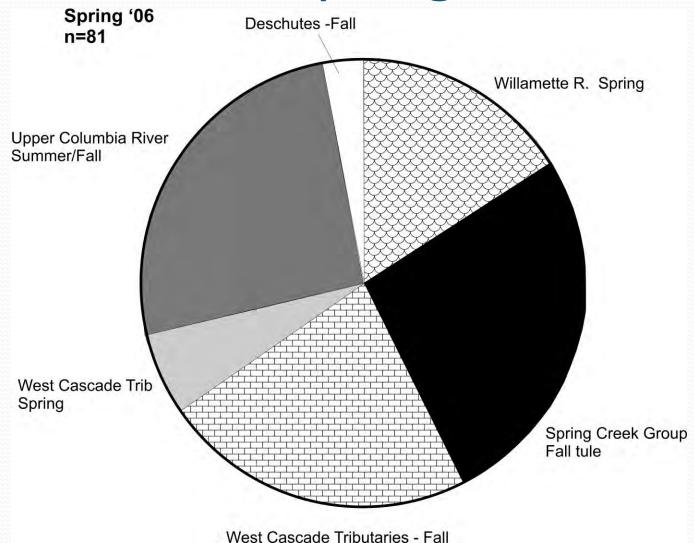
Data sparse b
 Chinook and

Change in condition factors after


Wet Change in coho condition factor (K) LaCenter and Enyart 2006 (n=9))


Stock composition of juvenile Chinook in lower Willamette floodplains and river

Chinook fry stock and origin


- DU and ODFW observe Chinook fry in Willamette R. and wetlands winter/spring
- DU collected fin clips winter/spring 2005 and 2006
- David Teel, NOAA Fisheries,
- microsatellite DNA analysis

river vs. wetland spring '05

Wetlands – spring '06

- Juvenile salmonid use of seasonal floodplain wetlands was widespread across the region.
- Salmonids were caught in every wetland sampled, although relative abundance varied greatly.

- Risk of juvenile salmonid predation in seasonal floodplain wetlands may be small judging from
- the low relative abundance of potential piscivores in the catch,
- high relative abundance of other species more prone to predation (threespine stickleback), and
- the increase in rearing area following inundation may reduce the probability of encountering a predator.

 Moderate to high growth rates (up to 1.04 mm/d) of salmonids rearing in wetlands and higher condition factors after wetland rearing compared with wetland entry indicated that juvenile salmon received some benefit by inhabiting floodplain wetlands.

- Wetland water temperatures were in the optimal range for juvenile salmonid growth during the late winter and early spring.
- Juvenile salmon egressed from wetland sites as water temperatures warmed in the spring.

- Juvenile salmon caught in traps as they entered wetlands from adjacent rivers indicated volitional entry.
- Patterns of inbound and outbound movement of juvenile salmon at wetland sites varied seasonally.
- Movements were prompted by different environmental variables depending on site, species, and whether juvenile salmon were entering or leaving wetland sites.

Implications for restoration and management: A

- Despite alterations to habitat and hydrologic regime, juvenile coho and Chinook use floodplain habitats in winter and spring when they have access
- Will providing ingress/egress opportunity benefit salmon?
 - Growth, early indications suggest yes
 - Survival? Life history diversity?

Implications for restoration and management: B

- Design and management of projects effect ingress/egress and stranding
- Must choose appropriate design according to hydrology and management capability

Implications for restoration and management: C

 Restoration projects in lower river reaches may benefit juveniles from stocks other than those that spawn upstream in that river

Support provided by:

- Ducks Unlimited
- MJ Murdock Charitable Trust
- Oregon Watershed Enhancement Board
- FishAmerica Foundation
- Pacific Joint Venture
- David and Lucille Packard Foundation

- The Wertheimer Family Trust
- National Fish and Wildlife Foundation
- EPA Wetland Program
- US Forest Service
- Oregon SeaGrant