
Ridgefield Pits Restoration Design: Physical Model Overview



Model Package: Tuflow (University of Queensland / British Maritime Technology)



Tuflow FV Flexible Mesh (www.tuflow.com)



East Fork Downstream Hydro Model – La Center Floodplain Projects (2012-205)

Apply Columbia R. stage

(NOAA St. Helens Gauge)

Apply upstream flow

(Ecology Daybreak gauge)

Apply upstream flow

(Lewis R Ariel Gauge)

Estimated relationship 
between Daybreak 
and Heisson gauge 
data, to allow  
application of a wider 
range of flows.

Modeled levee breach 
scenarios at northern 
and southern 
floodplain wetland 
segments upstream of 
La Center.

North

floodplain

South

floodplain



East Fork Downstream Hydro Model – La Center Floodplain Projects (2012-2015)

Began long term 
collection of East Fork 
Lewis River stage 
data from La Center
to above Mason 
Creek confluence
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WSE1 2013–2019

WSE6 2013–2015

WSE5 2012–2015

WSE4 2012–2014

WSE3 2013–2015

WSE2 2012–2017

 Source: Esri, DigitalGlobe, GeoEye,



East Fork Downstream Hydro Model – La Center Floodplain Projects (2012-2015)

- Initial model validation at 1-year flood return interval and low-flow

boundary condition inputs: results, simulated vs. observed:

- Later calibrations were performed for 2-year and 80-year (Dec. 2015) flood return intervals



East Fork Hydro Model Phase 2 – Add Ridgefield Pits/Daybreak Upstream (2018)

Used Downstream 
model to establish 
stage-discharge (H-Q) 
relationship that can 
be applied to run the 
Ridgefield 
Pits/Daybreak model

Apply Columbia R. stage

(NOAA St. Helens Gauge)

Apply upstream flow

(Ecology Daybreak gauge)

Apply upstream flow

(Lewis R Ariel Gauge)

plot output stage at US 

boundary for a range of 

input flows



Model hydraulic inputs: H-Q rating curve

Established relationship between upstream flow (Q) and downstream water level 
based on available data:

Cr, β: rating curve

constants

a: constant which

represents the

gauge reading

corresponding

to zero discharge.

𝑄 = 𝐶𝑟 𝐻 − 𝑎 𝛽

Over bank flow:

In bank flow: 𝑄 = 20 𝐻 − 2.5 0.64

𝑄 = 20 𝐻 − 4.3 0.35



East Fork Hydro Model Phase 2 – Add Ridgefield Pits/Daybreak Upstream (2018)

H-Q relation from Downstream 

model drives downstream 

boundary of Ridgefield model

Downstream model

Q (Heisson)

H



Ridgefield Model Topographic Inputs: 2010 LiDAR 

2010 Lower 
Columbia LiDAR 
(Corps of Engineers)



Data gaps due to 
standing water

Ridgefield Model Topographic Inputs: 2010 LiDAR 



Data gaps due to changes 
in planform over time

Channel form 2010

2010 elevation model

Ridgefield Model Topographic Inputs: 2010 LiDAR 



Channel form 2010

2017 Image

Data gaps due to changes 
in planform over time

Ridgefield Model Topographic Inputs: 2010 LiDAR 



Topo-bathy: 3600 points, RTK and total station

Bathy:  4 miles, single beam sonar

Ridgefield Model Topographic Inputs: Topo-bathy data collected in 2018 (I-fluve/LCEP)



LiDAR elevations with survey points 

Ridgefield Model Topographic Inputs: Topo-bathy data collected in 2018 (I-fluve/LCEP)



Model grid elevations derived from 

survey-corrected LiDAR

Ridgefield Model Topographic Inputs: Topo-bathy data collected in 2018 (I-fluve/LCEP)



Initial model grid

Ridgefield Model Grid Development

- Cells conform to 

channel geometries 

(flexible mesh)

- High cell resolution 

(2m) where needed to 

effectively represent 

existing topography.

- Lower cell resolution 

elsewhere to minimize 

model run times

Mill Cr. grid detail



Revised model 

grid

Ridgefield Model Grid Development

- Expanded coverage 

through DS floodplain

- Switched to semi-fixed 

grid in project area to:

o improve performance 

of sediment/morpho-

dynamic module

oeliminate grid biases 

when comparing 

design alternatives



Revised model 

grid

Ridgefield Model Grid Development

- Expanded coverage 

through DS floodplain

- Switched to semi-fixed 

grid in project area to:

o improve performance 

of sediment/morpho-

dynamic module

oeliminate grid biases 

when comparing 

design alternatives

Fixed grid 

resolution = 5m 



Existing grade

Ridgefield Model Grid Development – Alternative 3, multi-thread

Alternative 3 

multi-thread

Initial channel 

design depths 

= 4 ft



Base flow (1kcfs)

Ridgefield Model Hydro Results Comparison – Simulated Water Depths

Low flow (60 cfs) 1-year (5k cfs) 5-year (15k cfs)

Existing

Alt 3

Existing

Alt 3

Existing

Alt 3

Existing

Alt 3



Ridgefield Model Hydro Results Comparison – Longitudinal Profiles



Base flow (1kcfs)

Ridgefield Model Hydro Results Comparison – Simulated Bed Shear Stress

Low flow (60 cfs) 1-year (5k cfs) 5-year (15k cfs)

Existing

Alt 3

Existing

Alt 3

Existing

Alt 3

Existing

Alt 3

𝝉𝒄 (gravel)
𝝉𝒄 (coarse gravel)

𝝉𝒄 (cobble)

𝝉𝒄 (gravel)
𝝉𝒄 (coarse gravel)

𝝉𝒄 (cobble)



Grain Size and Critical Shear Stress

Description Grain Size 
(mm)

Tau,c Shields’ 
(1936) (N/m2)

Tau,c Soulsby’s 
(1997) (N/m2)

Fine Sand 1 0.50 0.50

Gravel 10 9.0 9.0

Coarse Gravel 25 22.4 22.4

Cobble 100 89.1 89.1 Slide source:  BWT-WBM  (Tuflow FV)



Sediment Sampling Plan (2018)

bank cut profile

depth of refusal

surface/subsurface pebble counts



Sediment Sampling – Bed Material (Surface/Armoring)



Sediment Sampling – Bed Material (Surface/Armoring)



Sediment Sampling – Bed Material (Surface/Armoring)

• Relatively consistent size distribution throughout the study area

• D10 ≈ 20mm Coarse Gravel

• D50 ≈ 50mm Very Coarse Gravel

• D84 ≈ 100mm Cobble



Sediment Sampling – Bed Material (Subsurface)



Sediment Sampling – Bed Material (Subsurface)

• Two peaks in grain size, i.e. mixture of:

1. Coarse components: Gravel/Cobble, ~ same as river bed

2. Fine components: Sands, even silts (2mm and less)



Sediment Sampling – Floodplain Material



Sediment Sampling – Floodplain Material

• Also has two peaks in grain size. Similar profiles to riverbed 
subsurface.



Sediment Sampling – Vertical Bank Profile



Sediment Sampling – Vertical Bank Profile



Sediment Sampling – Vertical Bank Profile

Type 1: Single layer of mixed sand, 
gravel, cobble. Forested floodplains.

Type 2: Two layer structure with thick 
sand/silt layer over the Type 1 layer.  

More dominant.



Proposed Sediment Parameters for Modeling

Sediment Type A: 

bed surface layer

Sediment Type B: 

bed sublayer, forested floodplain

Sediment Type C: 

Bank top layer,

uniform size of
1 or 2 mm



Proposed Sediment Parameters for Modeling



Existing grade

Ridgefield Model Grid – Friction and Sediment Parameter Assignment

Alternative 3 

multi-thread



Tuflow FV Sediment Module: Armouring Feature

Slide source: BWT-WBM  (Tuflow FV)



Tuflow FV Sediment/Morpho-dynamic Model Key Features

• Suspended load

• Hydraulic module 

→ advection / dispersion 

• Sedimentation / Erosion  (Mehta 

Model)

• Bedload (Meyer-Peter Mueller Model, 

Wilcock Crowe just added)

• Morphology (adjusts bed elevation in 

response to sediment transport)

• Multiple sediment fraction

• Multiple bed layer

• Armouring

• 2D/3D

Slide source: BWT-WBM  (Tuflow FV)



Transport Mode Governing Equations

- Condition for sediment transport:  Bed shear stress (𝜏𝑏)  >  critical shear stress (𝜏𝑐)

- Look at 𝜏𝑏 values output by hydrodynamic (or sediment) model to get a sense of 

where sediment is predicted to move under different flow conditions.

- Compare to known sources (imagery) to see if model is making sense

Suspended Load Erosion Model == Mehta

Mehta’s erosion model

Bedload Model == MPM

Meyer-Peter Müller’s equation

𝐸 = 𝐸𝑟 𝜏𝑏/𝜏𝑏,𝑐 − 1
𝛼

𝑞𝑏𝑣

𝐺 − 1 𝑔𝑑50
3

= 8 𝜏𝑏∗ − 0.047 3/2



Morpho-dynamic Module Results: Bed Elevation Change, post 5-yr event

-1.0

0

1.0

**morpho-dynamic 

simulations take a long 

time, so we are 

waiting to have the 

restoration alternatives 

more developed 

before running 

additional scenarios

Bed elevation change (m)



Model Results: Bed Shear Stress, Q = 1000 cfs (base flow)

𝜏𝑏 > 𝜏𝑐 for:

none

sand

gravel

cobble



Model Results: Bed Shear Stress, Q = 3000 cfs (~Q1)

𝜏𝑏 > 𝜏𝑐 for:

none

sand

gravel

cobble



Model Results: Bed Shear Stress, Q = 15,000 cfs (~Q20)

𝜏𝑏 > 𝜏𝑐 for:

none

sand

gravel

cobble



Model Results: Bed Shear Stress, Q = 28,600 cfs (~Q100)

𝜏𝑏 > 𝜏𝑐 for:

none

sand

gravel

cobble



Water Temperature Modeling – Field Data Plan For Model Input

Long term site (2012 – 2018) Where to apply cold water 

inputs in model?



Water Temperature Modeling  - In-situ Temperature Monitoring Results



Water Temperature Modeling  - In-situ Temperature Monitoring Results



Surface Temperature (deg. C)
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Water Temperature Modeling - High Resolution FLIR Temperature Survey (2020)



Water Temperature Modeling – FLIR/In-Situ Comparison
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Base flow (500 cfs)

Water Temperature Modeling – Sample Results

Low flow (60 cfs)

Source inputs based 

on in-situ data
Existing

Alt 3

Existing

Alt 3



Water Temperature (2018)



Water Temperature (2018)



Water Temperature (2018)

Model Next Steps:

1.  Hydro/Temperature Model Updates

- refine Alternative 3

o improve cut/fill balance (currently 400,000 yd^3 deficit)

o remove cross-floodplain slope

- create Alternative 2/3 hybrid (2-3 channel option)

o 2-3 thread system through Pits area

- refine water temperature inputs based on new FLIR data

- begin evaluating Mill Creek and Side Channel alternatives

2. Run morpho-dynamic simulations



Preliminary Model Observations• Questions?


