


#### **Project Goals Review**



- 1. Mainstem, tributary and off-channel water temperature assessment for lower East Fork Lewis River (LEF). Includes identification & mapping of existing thermal refuge locations.
- 2. Identify areas to protect and restore thermal refuges along the LEF and primary tributaries.
  - List of potential sites
  - Concept designs for top 3 sites
- 3. Revise habitat project recommendations in the LEF HRP as needed to incorporate these and other thermal actions.
  - Temp. listed as primary limiting factor Fall Chinook (SalonPORT)- all life histories
  - Also for coho and summer steelhead

# **Project Timeline**

#### Year 1

| - | Thermal-IR temperature data acquisition                                                                 | summer '20   |
|---|---------------------------------------------------------------------------------------------------------|--------------|
| • | Thermal-IR field verification and habitat assessment of existing cold locations.                        | summer '21   |
| - | Compile existing temperature info.                                                                      | fall '21     |
| • | Technical Oversight Group Meeting 1 – present temperature/site assessment results, primary focus areas. | Oct. 27, '21 |

#### Year 2

| • | Identify strategies to protect, enhance and create thermal refuge opportunities. | Nov-Dec '21 |
|---|----------------------------------------------------------------------------------|-------------|
| • | Develop initial site list.                                                       | Dec '21     |
| - | Develop site ranking methodology.                                                | Jan '22     |
| - | Rank initial sites (restoration opportunities)                                   | Jan '22     |
| • | Create map with temperature results, supporting data, sites.                     | Jan '22     |

| rev | chnical Oversight Group Meeting 2 –<br>riew site selection and ranking<br>ethodologies, initial site list, ranked sites. | Jan 27, '22  |
|-----|--------------------------------------------------------------------------------------------------------------------------|--------------|
|     | velop alternatives for top three ranked storation sites.                                                                 | Feb '22      |
|     | chnical Oversight Group Meeting 3 –<br>riew of restoration alternatives.                                                 | Late Feb '22 |
|     | alize concept designs for top three<br>ked restoration sites.                                                            | March '22    |
|     | velop recommendations for landscape<br>el strategies¹ and changes to LEF_HRP.                                            | Feb-Mar '22  |
| rev | chnical Oversight Group Meeting 4 –<br>riew of final concept designs, additional<br>commendations.                       | March '22    |
|     | liver final products (report, data, concept signs).                                                                      | Apr '22      |

1. Includes broad-based prioritization of areas for improved riparian shading.

# **TOG Meeting 1 Re-cap**

- 1) Reviewed temperature data, including thermal-IR and in-stream results.
- 2) Presented 4 focal areas for identifying potential opportunities to protect, restore, and create cold-water refuge zones:
  - 1) Downstream RM 4.5 5.5 (above La Center)
  - 2) Ridgefield Pits RM 7.5 9
  - 3) Below Lewisville Bridge RM 11.5 13
  - 4) Lucia Falls RM 20.5 21.5
- 3) Received input from TOG on focal areas and next steps for site selection and prioritization.
  - a) Ranked focal areas 1 >> 3 >> 2 >> 4 (high >> low)
  - b) Identified additional supporting data sources including:
    - Dept. of Ecology gaining/losing GW reaches
    - Clark County acquisition list and AOI



### LEF Water Temperature Strategies (LCEP)

#### **Site Scale**

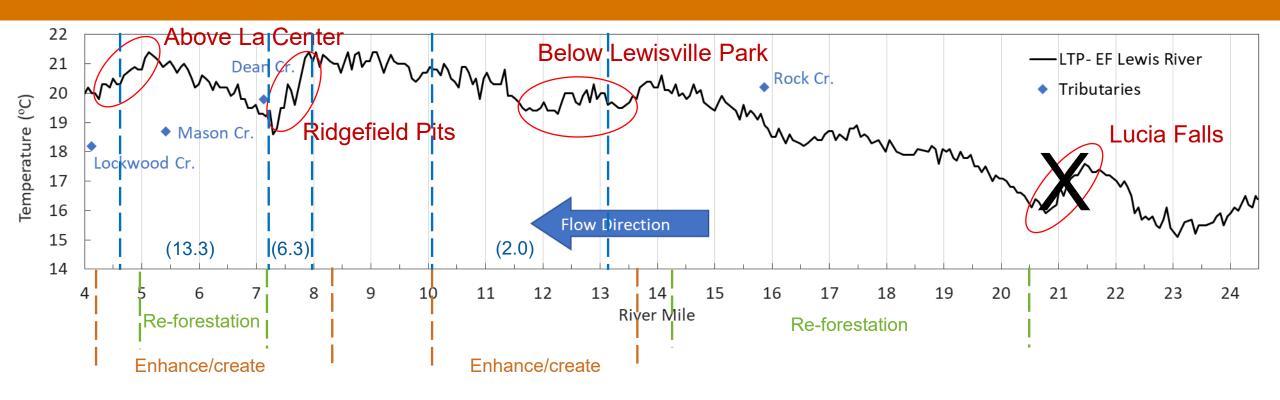
| Strategy         | Potential Actions                                                                                                                                   | Notes                                                                             |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Preserve/Protect | - acquisition/easements                                                                                                                             | Applies primarily to existing thermal refuge locations on non-public lands        |
| Enhance          | <ul><li>improve habitat (wood placement, shading, etc.)</li><li>increase connection to groundwater/tributary flow</li><li>flow diversions</li></ul> | Applies primarily to existing thermal refuge locations with no social constraints |
| Create           | <ul><li>flow diversions</li><li>connect to groundwater</li><li>pumping</li></ul>                                                                    |                                                                                   |

#### **Landscape Scale**

| Strategy                                       | Notes                                                                                                                   |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Large-scale reforestation</li> </ul>  | LCEP doing a basic GIS analysis based on canopy heights provided by recent LiDAR and available stream temperature data. |
| <ul> <li>Water withdrawal reduction</li> </ul> | LCEP not assessing as part of this study.                                                                               |

## Landscape Scale Shade Analysis - Example

ArcGIS shade prediction based on sun position and canopy height


Predicted shade extent @ 14:30, Jun 23, 2021



Predicted shade extent @ 16:30, Jun 23, 2021

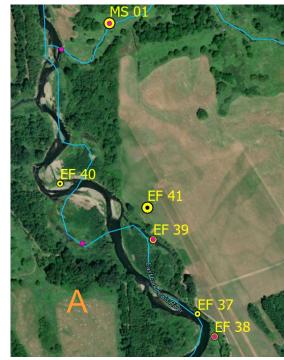


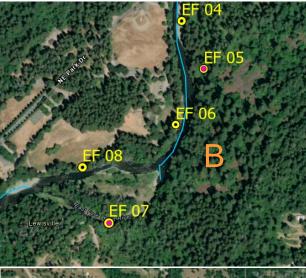
# **Temperature Strategies By Reach**



- Consider site enhancement/creation where DOE and LCEP reaches overlap (good GW potential)
- Consider reforestation 1) in reaches where temperature increases are seen, and
   2) gains can be realized (<u>suitable channel width/depth/current velocity, along a sufficient length of streambank lacking cover</u>; <u>large floodplain areas lacking cover</u>)
- Apply additional supporting information: Ex.: sites identified in 2009 LEF HRP

```
Dept. of Ecology (DOE)
Gaining Reach


(est. GW input, cfs)
```


# **Preliminary Site List**


• Identified 28 initial locations through outlined strategy

 Projects outside reach priorities typically overlap with LEF HRP locations









# Site Ranking Process and Criteria

- Protection of existing thermal refuge should be a top priority
- For enhancement/creation of sites we considered the following environmental (performance) and social (constructability) criteria:

#### **Environmental**

| Criteria                    | Factors Considered                                    | Weight (0–1) |
|-----------------------------|-------------------------------------------------------|--------------|
| Cooling source              | quality/reliability of cooling source                 | 1            |
| Type and size               | are we creating or enhancing a small or large feature | 1            |
| Connectivity                | does the site fill a gap between existing features?   | .5           |
| Mainstem proximity          | ease of access for rearing fish                       | 1            |
| Surrounding habitat quality | indicator of potential fish use                       | .4           |
| Ecology gaining reach?      | Indicator of good groundwater potential               | .4           |
| LEF HRP priority            | indicator of site habitat potential                   | .5           |
| Likelihood of success       | Geomorphic persistence/stability                      | .7           |

#### Social

| Criteria                                   | Weight (0–1) |
|--------------------------------------------|--------------|
| Ownership                                  | 1            |
| Access                                     | 1            |
| Likelihood of inclusion in another project | .5           |



# **Site Criteria Categories**

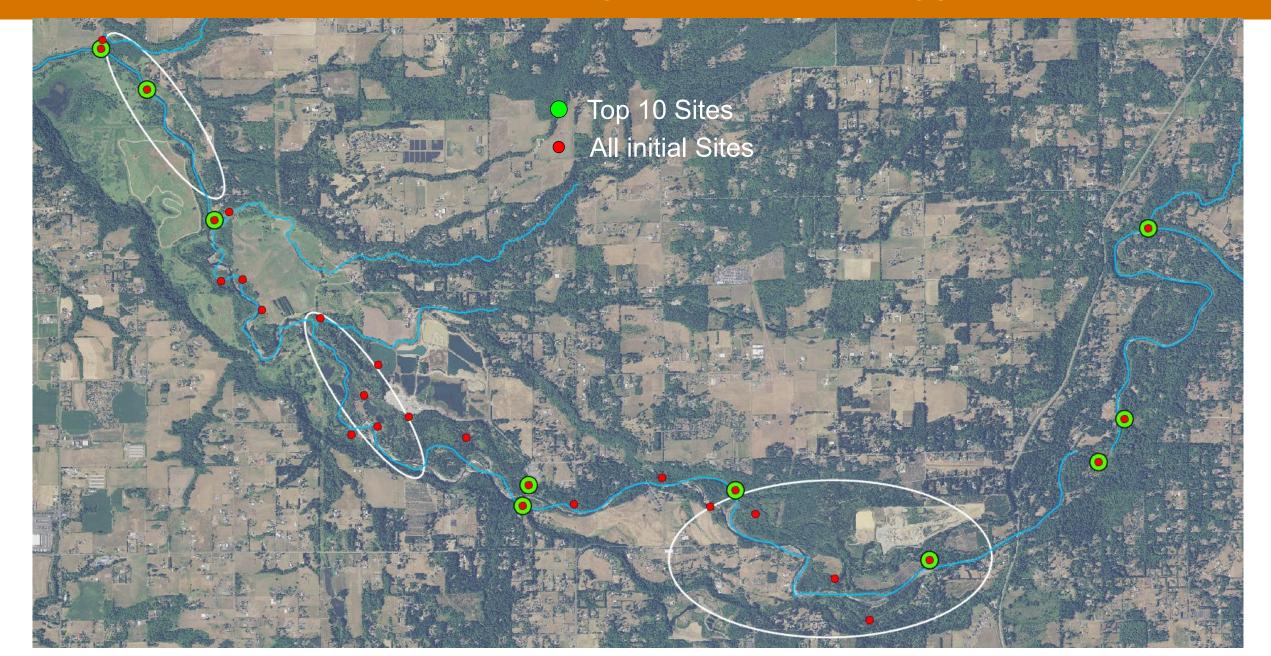
|                       | Environmental Criteria |   |                               |               |   |                  |   |              |   |           |           |    |                  |     |
|-----------------------|------------------------|---|-------------------------------|---------------|---|------------------|---|--------------|---|-----------|-----------|----|------------------|-----|
|                       | Source                 |   |                               |               |   | Distance to      |   | Surrounding  | 7 | Ecology   | Likelihod | d  | LEF HRP          |     |
|                       |                        |   | Source Type/Size Connectivity |               |   | Mainstem         |   | Hab. Quality |   | Reach     | of Succes | ss | Priority         |     |
|                       | Trib                   | 4 | Created/Large 4               | > 1 mi        | 4 | On               | 4 | Good         | 3 | Gaining 1 | High      | 2  | High (110 - 140) | ) 3 |
|                       | GW                     | 3 | Created/Small 3               | 0.5 - 1 mi    | 3 | Off/SC 0 - 200'  | 3 | Fair         | 2 | Losing 0  | Med       | 1  | Med (75 - 110)   | 2   |
|                       | Other                  | 2 | Enhance/Large 2               | 0.25 - 0.5 mi | 2 | Off/SC 200 - 300 | 2 | Poor         | 1 |           | Low       | 0  | Low (45 - 75)    | 1   |
|                       | Shade                  | 1 | Enhance/Small 1               | < 0.25 mi     | 1 | Off/SC > 300'    | 1 |              |   |           |           |    | N/A              | C   |
| teria weight<br>(0-1) | 1                      |   | 1                             | 0.5           |   | 1                |   | 0.4          |   | 0.4       | 0.7       |    | 0.5              |     |

|                          | Social Criteria  |   |        |   |                                                |   |  |  |  |  |  |
|--------------------------|------------------|---|--------|---|------------------------------------------------|---|--|--|--|--|--|
|                          | Ownership        |   | Access |   | Likelihood of<br>Inclusion in<br>other project |   |  |  |  |  |  |
|                          | Public           | 2 | Road   | 1 | No                                             | 1 |  |  |  |  |  |
|                          | Potential Public | 1 | River  | 0 | Yes                                            | 0 |  |  |  |  |  |
|                          | Likely Private   | 0 |        |   |                                                |   |  |  |  |  |  |
| criteria weight<br>(0-1) | 1                |   | 0.5    |   | 1                                              |   |  |  |  |  |  |

(0-1)



# **Example Site Sheet and Ranking**


| EFLR T | nermal Refugia Site E                                     | valuation                                                                                    |              |              |         |                                                                            |                   |                       |                                   |                       |                           |                             |                                       |                     |                        |                              |                                        |
|--------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------|--------------|---------|----------------------------------------------------------------------------|-------------------|-----------------------|-----------------------------------|-----------------------|---------------------------|-----------------------------|---------------------------------------|---------------------|------------------------|------------------------------|----------------------------------------|
|        | Site Characterization                                     |                                                                                              |              |              |         | Environmental Conditions Scoring Social/Implementation Constraints Scoring |                   |                       |                                   |                       |                           |                             |                                       |                     | coring                 |                              |                                        |
| ID     | Site                                                      | Short Description                                                                            | Approx<br>RM | Feature Type | Source  | Type/Size                                                                  | Stepping<br>Stone | Mainstem<br>Proximity | Surrounding<br>Habitat<br>Quality | Ecology<br>Reach Type | Likelihoood of<br>Success | East Fork Hab.<br>Rest Plan | Normalized<br>Env. Score (0 -<br>100) | Ownership           | Construction<br>Access | Already in an active project | Normalized<br>Social Score (0-<br>100) |
|        | East Fork, RM 4 5-5 5                                     | mainstem, potentially enhance habitat in relatively cool reach (based on TIR). (BPA          | 4.5-5.5      | mainstem     | Other   | Enhance/Large                                                              | > 1 mi            | On                    | Fair                              | Gaining               | High                      | N/A                         |                                       | Public              | Road                   | No                           |                                        |
| 1      | 24361 0110, 1401 4_3 3_3                                  | 43B project area)                                                                            | 1.5 5.5      | manistem     | 2       | 2                                                                          | 2                 | 4                     | 0.8                               | 0.8                   | 1.4                       | 0                           | 58                                    | 2                   | 0.5                    | 1                            | 100                                    |
| 2      | Off-channel RM 6.3 L Bank<br>(above 5A side chan project) | off channel enhancement - need to determine thermal potential.                               | 6.3          | off-chan     | GW<br>3 | Enhance/Small                                                              | 0.25 - 0.5 mi     | Off/sc 0 - 200'       | Fair<br>0.8                       | Gaining<br>0.8        | High<br>1.4               | N/A<br>0                    | 44                                    | Public<br>2         | Road<br>0.5            | No<br>1                      | 100                                    |
| 2      | Off-channel RM 6.4 R bank                                 | We didn't confirm anything here, and there                                                   | 0.5          | OH CHAIT     | Shade   | Enhance/Small                                                              | 0.25 - 0.5 mi     | Off/sc 0 - 200'       | Fair                              | Gaining               | Med                       | Med (75 - 110)              |                                       | Likely Private      | Road                   | No                           | 100                                    |
| 3      | (EF39)                                                    | was discussion of some restoration previously occurring here- but are there addt.            | 6.4          | off-chan     | 1       | 1                                                                          | 1                 | 3                     | 0.8                               | 0.8                   | 0.7                       | 1                           | 32                                    | 0                   | 0.5                    | 1                            | 43                                     |
|        | Off-channel RM 6.6 R bank                                 | cold off channel area- chum channel? HRP<br>observed cold water here. Has ISC/FOEF           |              |              | GW      | Enhance/Small                                                              | 0.5 - 1 mi        | Off/sc 0 - 200'       | Poor                              | Gaining               | Med                       | Med (75 - 110)              |                                       | Likely Private      | Road                   | No                           |                                        |
| 4      | (EF38)                                                    | completed a project here since HRP?  As Daybreak pits are phased out, could cold             | 6.6          | off-chan     | 3       | 1                                                                          | 1.5               | 3                     | 0.4                               | 0.8                   | 0.7                       | 1                           | 47                                    | 0                   | 0.5                    | 1                            | 43                                     |
| 5      | RM 7.5 Daybreak Pits                                      | groundwater be pumped into off-channel or mainstem?                                          | 7.5          | off-chan     | GW<br>3 | Created/Small                                                              | 0.5 - 1 mi<br>1.5 | Off/sc 0 - 200'       | Poor<br>0.4                       | Gaining<br>0.8        | Low                       | N/A<br>0                    | 49                                    | Likely Private<br>0 | Road<br>0.5            | No<br>1                      | 43                                     |
| 3      |                                                           | low prioritynot even confirmed. Needs more                                                   | 7.5          | OH CHAIT     | GW      | Enhance/Large                                                              | 0.5 - 1 mi        | Off/sc 0 - 200'       | Poor                              | Gaining               | Med                       | N/A                         |                                       | Likely Private      | River                  | Yes                          | .5                                     |
| 6      | RM 7.7 Ridgefield Pits 7/8                                | study                                                                                        | 7.7          | off-chan     | 3       | 2                                                                          | 1.5               | 3                     | 0.4                               | 0.8                   | 0.7                       | 0                           | 47                                    | 0                   | 0                      | 0                            | 0                                      |
|        | Off-channel RM 7.8 - 7.9 L                                | Historic Channel- Stream R or Pits 2 & 4-<br>Stream L                                        |              |              | GW      | Enhance/Small                                                              | >1 mi             | Off/sc 0 - 200'       | Poor                              | Gaining               | Med                       | N/A                         |                                       | Likely Private      | Road                   | Yes                          |                                        |
| 7      | bank                                                      | ****                                                                                         | 7.8-7.9      | off-chan     | 3       | 1                                                                          | 2                 | 3                     | 0.4                               | 0.8                   | 0.7                       | 0                           | 43                                    | 0                   | 0.5                    | 0                            | 14                                     |
|        | Off-channel RM 7.95 R bank                                | small off-chan former pit area. Would also<br>be addressed in RP design                      |              |              | GW      | Enhance/Small                                                              | > 1 mi            | Off/sc 0 - 200'       | Poor                              | Gaining               | Low                       | N/A                         |                                       | Likely Private      | River                  | Yes                          |                                        |
| 8      |                                                           | <u> </u>                                                                                     | 7.95         | off-chan     | 3       | 1                                                                          | 2                 | 3                     | 0.4                               | 0.8                   | 0                         | 0                           | 38                                    | 0                   | 0                      | 0                            | 0                                      |
|        | Off-channel RM 8.9 - pits                                 | pump cooler water from Pit near Danger Park<br>into side chan or mainstem. This pit was cool |              |              | GW      | Created/Small                                                              | 0.5 - 1 mi        | Off/sc > 300'         | Fair                              | Losing                | Low                       | N/A                         |                                       | Public              | Road                   | Yes                          |                                        |
| 9      | near Danger Park                                          | when measured in July '21                                                                    | 8.9          | off-chan     | 3       | 3                                                                          | 1.5               | 1                     | 0.8                               | 0.4                   | 0                         | 0                           | 35                                    | 2                   | 0.5                    | 0                            | 71                                     |
|        | Side channel RM 9 - 9.5 (R                                | EF28 in HRP-confirmed cold in July 21                                                        |              |              | GW      | Enhance/Large                                                              | < 0.25 mi         | Off/sc 0 - 200'       | Fair                              | Losing                | High                      | High (110 - 140)            |                                       | Public              | Road                   | Yes                          |                                        |
| 10     | bank) (EF 28)                                             |                                                                                              | 9-9.5        | side-chan    | 3       | 2                                                                          | 0.5               | 3                     | 0.8                               | 0.4                   | 1.4                       | 1.5                         | 55                                    | 2                   | 0.5                    | 0                            | 71                                     |
|        | Side channel along                                        | Cold water confirmed in this disconnected historic channel.                                  |              |              | GW      | Enhance/Large                                                              | 0.5 - 1 mi        | Off/sc > 300'         | Fair                              | Gaining               | Med                       | N/A                         |                                       | Likely Private      | Road                   | Yes                          |                                        |
| 11     | Storedahl Off shannel RM 0.4                              |                                                                                              | 7.7          | side-chan    | 3       | 2                                                                          | 1.5               | 1                     | 0.8                               | 0.8                   | 0.7                       | 0                           | 35                                    | 0                   | 0.5                    | 0                            | 14                                     |
|        | Off-channel RM 9.4, Mill/Manley confluence                | install wood in beaver ponds at Manley<br>confluence for cover habitat. Possible re-         |              |              | Trib    | Enhance/Large                                                              | > 1 mi            | Off/sc 0 - 200'       | Good                              | Losing                | Med                       | Med (75 - 110)              |                                       | Likely Private      | Road                   | No                           |                                        |
| 12     | (EF27)                                                    | grade to increase access but would need                                                      | 9.4          | off-chan     | 4       | 2                                                                          | 2                 | 3                     | 1.2                               | 0.4                   | 0.7                       | 1                           | 67                                    | 0                   | 0.5                    | 1                            | 43                                     |
|        | Off-channel RM 9.7 R bank                                 | relic channel scar. Could grade in a downstream connection and tap groundwater               |              |              | GW      | Enhance/Small                                                              | 0.5 - 1 mi        | Off/sc 0 - 200'       | Good                              | Losing                | Med                       | Med (75 - 110)              |                                       | Likely Private      | River                  | No                           |                                        |
| 13     | (EF25)                                                    | potentially.                                                                                 | 9.7          | off-chan     | 3       | 1                                                                          | 1.5               | 3                     | 1.2                               | 0.4                   | 0.7                       | 1                           | 50                                    | 0                   | 0                      | 1                            | 29                                     |
|        |                                                           |                                                                                              |              |              |         |                                                                            |                   |                       |                                   |                       |                           |                             |                                       |                     |                        |                              |                                        |

# **Top 10 Prioritized Sites**

| ID | Site                                                 | Short Description                                                                                                                                                                                     | Approx<br>RM  | Feature Type | Env. Score<br>(0 - 100) | Social Score<br>(0-100) |
|----|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-------------------------|-------------------------|
| 25 | Mason Cr/EF confluence                               | Potential deflector structure but is there enough summer flow?                                                                                                                                        | 5.9           | confluence   | 70                      | 43                      |
| 15 | Side channel above Daybreak Bridge (R bank)          | with trib input, beaver dams, deep pools. Actions could include protect, improve fish access, add                                                                                                     | 10.5          | side-chan    | 68                      | 57                      |
| 12 | Off-channel RM 9.4,<br>Mill/Manley confluence (EF27) | install wood in beaver ponds at Manley confluence<br>for cover habitat. Possible re-grade to increase<br>access but would need more eval.                                                             | 9.4           | off-chan     | 67.4                    | 43                      |
| 27 | Rock Cr/EF confluence                                | potential deflector structure but is there enough summer flow?                                                                                                                                        | 16            | confluence   | 66.7                    | 29                      |
| 26 | Lockwood Cr/EF confluence                            | potential deflector structure but is there enough summer flow?                                                                                                                                        | 4.5           | confluence   | 64                      | 43                      |
| 21 | Off-channel RM 14.1 L bank<br>(EF05)                 | HRP observed cold water here. Has ISC/FOEF completed a project here since HRP?                                                                                                                        | 14.1          | off-chan     | 60                      | 29                      |
| 1  | East Fork, RM 4_5-5_5                                | mainstem, potentially enhance habitat in relatively cool reach (based on TIR). (BPA 43B project area)                                                                                                 | 4.5-5.5       | mainstem     | 58                      | 100                     |
| 10 | Side channel RM 9 - 9.5 (R<br>bank) (EF 28)          | EF28 in HRP-confirmed cold in July 21                                                                                                                                                                 | 9-9.5         | side-chan    | 55                      | 71                      |
| 28 | RM 12.5 - 12.6, both banks<br>(EF11)                 | EF 11 Could be off-chan opportunity to create, or mainstem opportunity to preserve/enhance. Need to verify TIR results.                                                                               | 12.5-<br>12.6 | off-chan     | 53                      | 100                     |
| 20 | Off-channel RM 13.7 L bank<br>(EF07)                 | Did not observe cold water here, but could a<br>hyporheic zone be created by limiting upstream flow<br>entering? HRP lists as high priority but does not ID<br>temp notential. Could it include this? | 13.7          | off-chan     | 53                      | 86                      |



# Map of Top Sites (Env. Score Only)



- Extensive literature related to characterization and use of thermal refuge.
- Limited literature related to creation and enhancement of thermal refuge.

Kurylyk et al. 2015, Ecohydrology

Preserving, augmenting and creating cold-water thermal refugia in rivers: Concepts derived from research on the Miramichi River, New Brunswick (Canada)

Barret L. Kurylyk<sup>1</sup>, Kerry T.B. MacQuarrie<sup>1</sup>, Tommi Linnansaari<sup>2</sup>, Richard A. Cunjak<sup>3</sup>, and R. Allen Curry<sup>3</sup>

Corresponding author contact information- Email: <a href="mailto:barret.kurylyk@unb.ca">barret.kurylyk@unb.ca</a>, Phone: 506-447-3417, Fax: 506-453-3568, Mailing address: Department of Civil Engineering, University of New Brunswick, H-124, Head Hall, 17 Dineen Drive, P.O. Box 4400, Fredericton, NB, Canada E3B 5A3.

Note: This is a post-print of this 2015 *Ecohydrology* article. If you wish to have the final, type-set version, please send me an email at <a href="mailto:barret.kurylyk@dal.ca">barret.kurylyk@dal.ca</a> or go to: <a href="http://onlinelibrary.wiley.com/doi/10.1002/eco.1566/abstract">http://onlinelibrary.wiley.com/doi/10.1002/eco.1566/abstract</a>

<sup>&</sup>lt;sup>1</sup> Department of Civil Engineering, University of New Brunswick and Canadian Rivers Institute

<sup>&</sup>lt;sup>2</sup> Department of Biology, University of New Brunswick and Canadian Rivers Institute

<sup>&</sup>lt;sup>3</sup> Department of Biology and Faculty of Forestry and Environmental Management, University of New Brunswick and Canadian Rivers Institute

From Kurylyk et al. 2015, Ecohydrology

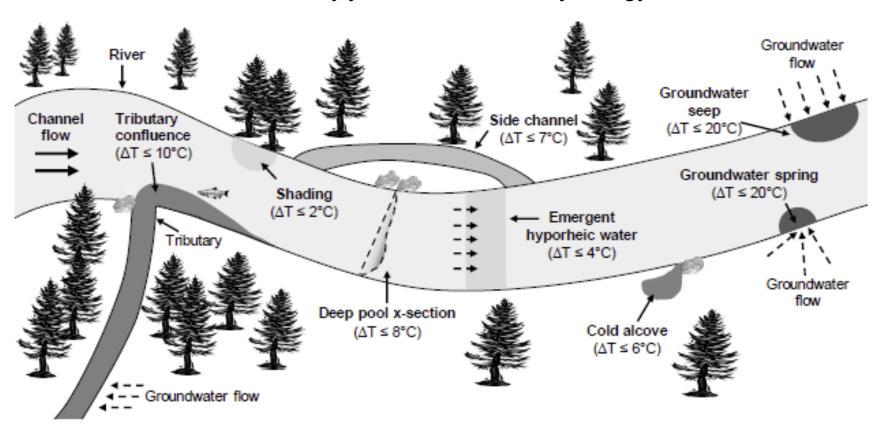



Figure 1. A conceptual overview of mechanisms that induce thermal diversity in rivers and create suitable thermal refugia. The estimated maximum temperature differences between a particular thermal anomaly and the ambient river temperature given in brackets are derived from other literature sources (Ebersole et al., 2003b; Nielsen et al., 1994) and extensive aerial infrared images and in-stream thermal surveys of the Little Southwest Miramichi River and other branches of the Miramichi River (e.g., Wilbur, 2012). Darker colors indicate colder water.

#### From Kurylyk et al. 2015, Ecohydrology

climate change may influence surface/subsurface thermal dynamics and to develop effective thermal refugia management strategies (Kanno *et al.*, 2013).

#### 5. Augmenting existing thermal anomalies

In certain locations where thermal anomalies are not functioning as refugia, their conditions may be improved through application of ecological and hydraulic principles.

#### 5.1 Enhancing the spatial extent or preserving the temperature of cold-water plumes

The potential for an existing thermal anomaly to provide thermal refuge may be potentially increased by enhancing the thermal difference between the cold-water plume and the river mainstem. The spatial extent and temperature of cold-water plumes are primarily controlled by thermal mixing due to the mainstem channel flow (Fischer et al., 1979; Tanaka, 2007). Advective thermal mixing is limited along the river bank due to increased shear stress (Fischer et al., 1979). The influence of shear stress on the spatial extent of thermal anomalies is evidenced by the fact that cold-water plumes can extend along river banks for significant distances downstream of the point of cold-water input (e.g., cold-water tributary plume, Figure 2c). Thus, the spatial extent can be increased and the temperature of cold-water refugia may be preserved by limiting hydraulic and thermal mixing between the cold-water plume and the river mainstem. A channel deflector constructed of boulders or other material is presented in Figure 4 as one option for physical manipulation and control of flow. However, fluvial geomorphological principles should be employed to design any such channel modifications, because the installation of channel deflectors can lead to scouring problems and bank erosion, particularly when the deflector is submerged at high flow (Biron et al., 2004; Rodrigue-Gervais et al. 2011). In addition, river ice may damage the designed deflectors in seasonal latitudes (Biron et al., 2005), and thus it may be beneficial to design easily removable, temporary deflectors. Hydrodynamic thermal mixing models such as CORMIY3 (Ignes at al. 1996) can be employed to model the

#### From Kurylyk et al. 2015, Ecohydrology

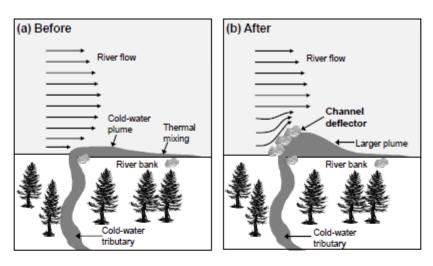
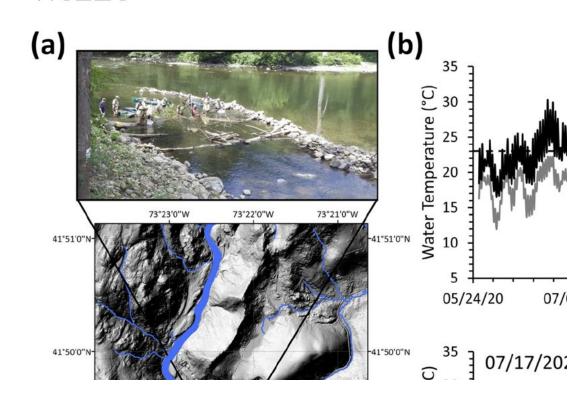



Figure 4. A cold-water plume at the mouth of a tributary before (a) and after (b) installation of a channel deflector to limit advective thermal mixing (adapted from Bilby, 1984).


further decrease the temperature of existing thermal anomalies. For example, Ebersole *et al.* (2003b) installed experimental shade covers and observed a subsequent 2-4°C decrease in the daily maximum temperature of cold-water plumes. The effectiveness of installing artificial shading will, of course, depend on the ability of shade to influence a specific in-stream temperature regime (Ebersole *et al.*, 2003b).

#### 5.2 Enhancing the cover of cold-water plumes

Salmonids may be threatened by avian predators when aggregating in refugia (Keefer *et al.*, 2009). The enhanced shading described previously is one potential method for decreasing

From Sullivan et al. 2021, Ecohydrology

 $\perp$ Wiley $_{-}$ 



#### From Kurylyk et al. 2015, Ecohydrology

moodplain thermal rerugia where now may have a lesser impact on the structure itself. In this case, the stakes and wires would be protected from minor increases in river stage, and it would be difficult for swimming birds or mammals to dive under the array.

#### 6. Creating new thermal refugia

Many river reaches lack thermal diversity and thus cannot provide suitable thermal refugia for cold-water fish species. One example is the lower reach of the Fraser River (British Columbia), where significant mortalities of sockeye salmon were reported as a result of thermal stress (Martins *et al.*, 2011). In some situations, it may be feasible to create the thermal diversity necessary to produce useful thermal refugia to limit stress-induced mortalities. A critical unknown to be determined prior to utilizing these, possible costly, solutions is the spatial frequency at which thermal refugia are needed for different target species, *e.g.*, a linear distance which various fish species are capable of moving under physiologically stressful conditions to seek cold-water refugia.

#### 6.1 Inducing thermal anomalies via groundwater pumping

Natural groundwater discharge is a source of cool water during the summer period when surface waters are at their annual temperature maxima (Figure 1). Inducing points of focused groundwater discharge may be a viable mechanism by which to create new thermal refugia. This could be achieved by pumping groundwater from upslope locations in adjacent aquifers to a discharge point along the river (Figure 5). Pumping and immediately discharging the cold, intercepted groundwater to the river will not significantly change the total groundwater input to the river. Rather, it will transform groundwater discharge from a diffusive input that slightly cools the ambient river temperature to a focused input that significantly cools a smaller plume and thus creates a cold-water refuge (Figures 5b, 5c). A proposed design for an automated system is presented in Figure 5 in which a solar panel provides energy to power the pump, and the pumping is triggered by a signal from a water temperature sensor programmed to a species-

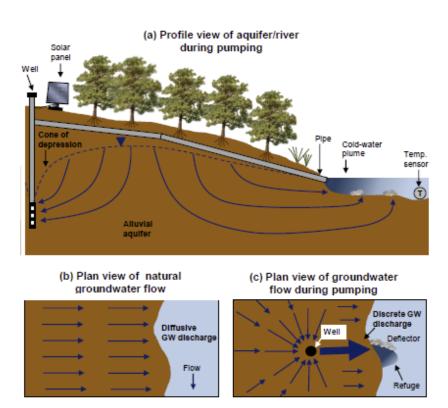
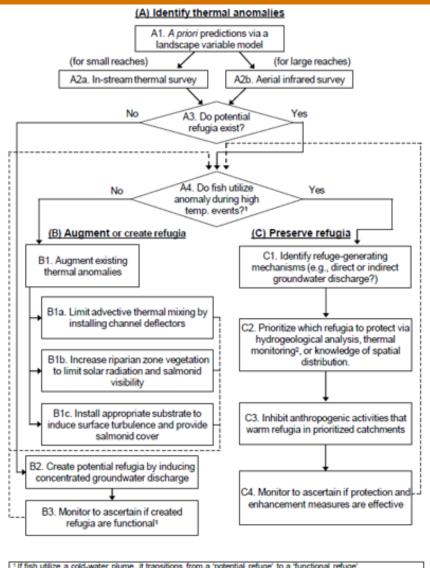




Figure 5. (a) Conceptual model for creating a temporary thermal refuge by pumping water from alluvial aquifers and discharging the groundwater at a discrete point. The groundwater pumping and redirection to the river transforms the groundwater discharge to the river from a (b) diffusive input to a (c) discrete input.

From Kurylyk et al. 2015, Ecohydrology



¹ If fish utilize a cold-water plume, it transitions from a 'potential refuge' to a 'functional refuge'.
² Groundwater temperature monitoring can help indicate how sensitive a refuge will be to climate change.

Figure 7. Comprehensive thermal refugia management strategy that includes (a) identifying, (b) augmenting/creating, and (c) preserving (natural and engineered) thermal

Hester et al. 2009, Limnology & Oceanography

Linnol. Oceanogr., 54(1), 2009, 355-367 © 2009, by the American Society of Limnology and Oceanography, Inc.

The influence of in-stream structures on summer water temperatures via induced hyporheic exchange

Erich T. Hester1,2

Curriculum in Ecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599

Martin W. Dovle

Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599

Geoffrey C. Poole3

Eco-Metrics, Inc., Tucker, Georgia 30084; Odum School of Ecology, University of Georgia, Athens, Georgia 30602

#### Abstract

Temperature is an important controlling factor for ecological functions. In-stream geomorphic structures affect stream thermal regimes by facilitating hyporheic exchange of water and heat between stream channels and underlying sediments. We varied the height of an experimental weir (representing debris dams, log dams, and houlder weirs) in a small stream during the summer and monitored the hydraulic and thermal response of surface

Wang et al. 2020, River Res. Applications

Received: 31 October 2019

Revised: 12 February 2020 | Accepted: 26 March 2020

DOI: 10.1002/rra.3634

#### RESEARCH ARTICLE

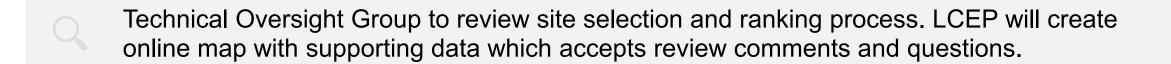
WILEY

Tributary confluences are dynamic thermal refuges for a juvenile salmonid in a warming river network

Terrance Wang<sup>1</sup> | Suzanne J. Kelson<sup>1</sup> | George Greer<sup>2</sup> | Sally E. Thompson<sup>2,3</sup> Stephanie M. Carlson<sup>1</sup>

<sup>1</sup>Environmental Science, Policy, and Management, University of California, Berkeley, California

<sup>2</sup>Civil and Environmental Engineering, University of California, Berkeley, California


3Civil, Environmental and Mining Engineering, University of Western Australia, Crawley, Western Australia, Australia

Correspondence

#### **Abstract**

As rivers warm, cold-water fish species may alleviate thermal stress by moving into localized thermal refuges such as cold-water plumes created by cool tributary inflows. We quantified use of two tributary confluence plumes by juvenile steelhead, Oncorhynchus mykiss, throughout the summer, including how trout positioned themselves in relation to temperature within confluence plumes. At two confluences, Cedar and Elder creeks, along the South Fork Eel River, California, USA, we moni-

#### Next Steps



LCEP to add any additional sites, revise scoring process as needed, and re-rank sites.

CEP to generate alternatives for top three sites.

Technical Oversight Group Meeting # 3 to review project alternatives. Late February 2022

February: Review restoration alternatives for three priority sites.
Upcoming Meetings:

March/April: Review concept designs for restoration alternatives.

